Drug Therapy During Pregnancy and the Perinatal Period

Marilynn C. Frederiksen, M.D.
Associate Professor Clinical Ob/Gyne
Feinberg Medical School,
Northwestern University

February 12, 2009

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration
- Enzymatic activity changes
- Increase in GFR
- Gastrointestinal changes

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes

Body Fluid Spaces in Pregnant and Nonpregnant Women

	WEIGHT	PLASMA VOLUME	ECF SPACE	TBW
	(kg)	(mL/kg)	(L/kg)	(L/kg)
NONPREGNANT		49		
	< 70		0.189	0.516
	70 – 80		0.156	0.415
	> 80		0.151	0.389
PREGNANT		67		
	< 70		0.257	0.572
	70 – 80		0.255	0.514
	> 80		0.240	0.454

Cardiovascular System Changes

- Plasma volume expansion
 - Begins at 6 8 weeks gestation
 - Volume of 4700 5200 ml peaks at 32 weeks gestation
 - Increase of 1200 1600 ml above nonpregnant women

Cardiovascular System Changes

- Cardiac output increases 30 50%
 - 50% by 8 weeks gestation
- Increase in stroke volume and heart rate
 - Stroke volume in early pregnancy
 - Heart rate in later pregnancy

Regional Blood Flow Changes

- Increased blood flow to uterus 20% of cardiac output at term
- Increased renal blood flow
- Increased skin blood flow
- Increased mammary blood flow
- Decreased skeletal muscle blood flow

HEPATIC BLOOD FLOW IN PREGNANCY (% CARDIAC OUTPUT)

Robson SC, et al. Br J Obstet Gynaecol 1990;97:720-4.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes

Respiratory Changes

- Compensated respiratory alkalosis
- Lowered P_aCO₂
- pH 7.44

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration

PROTEIN CONCENTRATIONS DURING PREGNANCY AND POSTPARTUM

Is The Hypoalbuminemia of Pregnancy Dilutional ?

- [GLOBULIN] IS NOT REDUCED
- DISTRIBUTION VOLUME DOES NOT AFFECT C_{ss}

$$C_{SS} = \frac{SYNTHESIS RATE}{CL_E}$$

• THEREFORE, \downarrow [ALBUMIN] REFLECTS EITHER \downarrow SYNTHESIS RATE OR \uparrow CL_E.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular system
 - Plasma volume expansion
 - Increase in cardiac output
 - Regional blood flow changes
- Respiratory Changes
- Decrease in albumin concentration
- Enzymatic activity changes

Enzymatic Activity Changes

- Thought to be related to pregnancy hormonal changes
- N-demethylation inhibited by progesterone, not by estrogen

CYP3A4

- Hydroxylation
- Increased activity during pregnancy

CYP1A2

- Activity decreased progressively during pregnancy
- Progressive lengthening of caffeine half-life

Caffeine Clearance – CYP 1A2

Aldridge A, et al. Semin Perinatol 1981;5:310-4.

CYP2C9

- Activity shown to increase during pregnancy
- Lowered total concentration of phenytoin during pregnancy

Phenytoin Plasma Concentrations during and after Pregnancy – CYP 2C9

Tomson T, et al. Epilepsia 1994;35:122-30.

CYP2D6 Activity

- Genetic determined polymorphism
- Increased clearance of metoprolol observed during pregnancy
- Increased clearance in homozygous and heterozygous extensive metabolizers
- No change in homozygous poor metabolizers

Wadelius M, etal. Clin Pharmacol Ther 1997; 62: 400.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR

GFR DURING PREGNANCY AND POSTPARTUM

Davison JM, Hytten FE. Br J Obstet Gynaecol Br Commonw 1974;81:588-95.

Pregnancy Physiology Potentially Affecting Pharmacokinetics

- Cardiovascular System
 - Plasma Volume Expansion
 - Increase in Cardiac Output
 - Regional Blood Flow Changes
- Respiratory Changes
- Decrease in Albumin Concentration
- Enzymatic Activity Changes
- Increase in GFR
- Gastrointestinal Changes

Gastrointestinal Changes

- Decreased gastric acidity
- Gastric emptying
 - Delayed in laboring women
 - No difference between 1st & 3rd ∆
 - No difference from postpartum
- Increased orocecal transit time in 3rd ∆
 - Progesterone effect
 - Pancreatic polypeptide inverse correlation

Maternal Physiologic Changes Altering PK of Drugs

Volume Expansion

CAFFEINE V_d (MARKER FOR TBW) DURING PREGNANCY AND POSTPARTUM

Aldridge A, et al. Semin Perinatol 1981;5:310-4.

THEOPHYLLINE V_d DURING PREGNANCY AND POSTPARTUM

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding-increase in free fraction of drugs bound to albumin

THEOPHYLLINE PROTEIN BINDING DURING PREGNANCY AND POSTPARTUM

Theophylline Protein Binding

Connelly TJ, et al. Clin Pharmacol Ther 1990;47:68-72.

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding
- Clearance changes

THEOPHYLLINE RENAL CLEARANCE DURING PREGNANCY AND POSTPARTUM

THEOPHYLLINE CL_H AND CL_{INT} DURING PREGNANCY AND POSTPARTUM

THEOPHYLLINE CLEARANCE DURING PREGNANCY AND POSTPARTUM

METHADONE CLEARANCE DURING AND AFTER PREGNANCY

(Primarily a CYP3A4 Substrate)

Pond SM, et al. J Pharmacol Exp Ther 1978;233:1-6.

Carbamazepine Plasma Concentrations During Pregnancy

(Primarily CYP 3A4 Substrate)

Tomsom T, et al. Epilepsia 1994; 35:122-30.

Phenytoin Plasma Concentrations during and after Pregnancy – CYP 2C9

Tomson T, et al. Epilepsia 1994;35:122-30.

FREE AND TOTAL PHENYTOIN LEVELS (DOSE = 300 MG/DAY)

CAFFEINE METABOLITE / PARENT DRUG RATIOS IN PREGNANT AND NON-PREGNANT EPILEPTIC WOMEN

Bologa M, et al. J Pharmacol Exp Ther 1991;257:735-40.

CAFFEINE METABOLITE / PARENT DRUG RATIOS IN HEALTHY PREGNANT AND NON-PREGNANT WOMEN

Tsutsumi K, et al. Clin Pharmacol Ther 2001; 70: 121.

Betamethasone PK in Singleton and Twin Pregnancies

Parameter	Singleton	Twin
V _d (L)	67.5 ± 27.9	70.9 ± 28.4
CI (L/h)	5.7 ± 3.1	8.4 ± 6.4 **
T½ (h)	9.0 ± 2.7	7.2 ± 2.4 *
	* P < .017	** P < .06

Ballabh P, et al. Clin Pharmacol Ther 2002; 71, 39.

Lamotrigine Clearance in Pregnancy

- Phase II biotransformation by glucuronidation
- Increased clearance in second and third trimesters (> 65%)
- May require dose adjustment
- Rapid decrease in clearance in the first two weeks postpartum

Tran TA, et al. Neurology 2002; 59: 251-55.

Pharmacokinetics of Cefuroxime in Pregnancy

Pt Category	V _D (L)	CI(ml/min) T(1/2)
Pregnant	17.8 <u>+</u> 1.9	282 <u>+</u> 34* 44 <u>+</u> 5*
At Delivery	19.3 <u>+</u> 3.1	259 <u>+</u> 35* 52 <u>+</u> 10
Postpartum	16.3 <u>+</u> 2.1	198 <u>+</u> 27 58 <u>+</u> 8

*p<0.05 on comparison to PP

Tobramycin Pharmacokinetics

- CI higher in mid-trimester with a corresponding shorter half-life
- CI lower in the third trimester with a corresponding longer half-life

Bourget P, et al. J Clin Pharm Ther 1991;16:167-76

Metformin PK in Pregnancy

- C_{max} in pregnancy 81% lower than postpartum values
- Mean metformin concentrations 69% of the postpartum values
- Mean AUC for metformin during pregnancy is 80% of the postpartum AUC

Hughes RCE et al. Diabetes Medicine 23:323-6, 2006.

Heparin PK during Pregnancy

- Shorter time to peak heparin concentration and effect
- Lower peak effect

Brancazio et al. Am J Obstet Gynecol 1995; 173: 1240.

Enoxaprin PK during Pregnancy

- T_{max} shows no change
- C_{max} lower during pregnancy
- Cl decreases in late pregnancy
- Lower anti-factor Xa activity
- AUC lower during pregnancy

Casele, et al. Am J Obstet Gynecol 1999; 181: 1113.

Maternal Physiologic Changes Altering PK of Drugs

- Volume expansion
- Protein binding
- Clearance changes
- Gastrointestinal changes

Oral Ampicllin Pharmacokinetics in Pregnancy

Parameter	Pregnant	Nonpregnant
AUC(cm ²)	8.2 <u>+</u> 4.1	12.6 <u>+</u> 4.3*
Peak Level (µg/ml)	2.2 <u>+</u> 1.0	3.7 <u>+</u> 1.5*
Bioavailability (%)	45.6 <u>+</u> 20.2	48.1 <u>+</u> 19.3**

* P < 0.001

** **NS**

Philipson A. J Inf Dis 1977;136:370-6.

PK of Oral Valacyclovir & Acyclovir

- The pro-drug Valacyclovir converted by first pass metabolism to Acyclovir
- Non-pregnant Valacyclovir gives 3 5 times higher plasma level as Acyclovir
- Valacyclovir PK study in pregnancy gave plasma levels 3 times higher than Acylovir

Kimberlin DF, et al. Amer J Obstet Gynecol 1998; 179: 846

Peripartum Pharmacologic Considerations

- Increased cardiac output
- Blood flow changes
- Uterine contractions
- ? Pharmacodynamic changes

MORPHINE PHARMACOKINETICS DURING LABOR

Gerdin E, et al. J Perinat Med 1990;18:479-87.

Pharmacokinetics of Cefuroxime in Pregnancy

Category	V _D (L)	CI (ml/min)	T(½)		
Pregnant	17.8 <u>+</u> 1.9	282 <u>+</u> 34*	44 <u>+</u> 5*		
At Delivery	19.3 <u>+</u> 3.1	259 <u>+</u> 35*	52 <u>+</u> 10		
Postpartum	16.3 <u>+</u> 2.1	198 <u>+</u> 27	58 <u>+</u> 8		
*p<0.05 on comparison to PP					

Postpartum PK Considerations

- Increased cardiac output maintained
- GFR increased
- Diuresis
- Breastfeeding
- Great variability

Postpartum Clindamycin Pharmacokinetics

Steen B, et al. Br J Clin Pharmacol 1982; 13: 661.

Postpartum Gentamicin Distribution Volume

Drug Studies for Pregnancy

- Pregnancy Specific Drugs
 - Tocolytic agents
 - Oxytocic agents
 - Eclampsia agents
- Drugs commonly used by women of childbearing potential
 - Antidepressants
 - Asthma drugs

Technical Considerations

- Ethical and IRB concerns
- Serial studies
 - Spanning pregnancy
 - Specific to peripartum period
 - Controls

Study Design

- Use population PK analysis
- Incorporate in vitro protein binding studies
- Use stable isotopes for bioavailability studies
- Use established tracer substances as reference markers

Teratogenesis

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility

General Principles of Teratology

Teratogens act with specificity

PHOCOMELIA DUE TO THALIDOMIDE

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship

DOSE-RESPONSE RELATIONSHIP

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus

Placental Transport

- Passive diffusion
- P-glycoprotein expressed on trophoblastic cells of placenta
- Active transport of P-gp substrates back to the mother
- Pore system
- Endocytosis

PHARMACOKINETIC MODEL OF MATERNAL-FETAL TRANSPORT

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed

All or Nothing Period

Figure 8-14 Schematic illustration of the critical periods in human development. During the first two weeks of development, the embryo is usually not susceptible to teratogens. During these predifferentiation stages, a

General Principles of Teratology

- Teratogens act with specificity
- Teratogens demonstrate a doseresponse relationship
- Teratogens must reach the conceptus
- Effects depend upon the development stage when exposed
- Genotype of mother and fetus effect susceptibility

Phenytoin

- Animal evidence for an arene oxide (epoxide) reactive metabolite
- Genetic susceptibility to the Dilantin Syndrome related to variation in Epoxide hydrolase activity

Prenatal Diagnosis of the Fetus at Risk

Buehler BA, et al. N Engl J Med 1990;322:1567-72.

Genetic Polymorphisms

- Decreased risk for fetal alcohol syndrome in African American women carrying alcohol dehydrogenase isoform 2

Mechanisms of Teratogenesis

- All theoretical
- Most not understood well
- Implications of a genetic component

Thalidomide

- Thalidomide causes DNA oxidation in animals susceptible to teratogenesis
- Pre-treatment with PBN (free radical trapping agent) reduced thalidomide embryopathy
- Suggesting that the mechansim is free radical-mediated oxidative DNA damage

Parman T,et al. Nature Medicine 1999; 5: 582

Teratogen?

- Is there a specific pattern of abnormalities?
- Was the agent present during development of that organ system?
- Is there a dose-response curve?
- Could there be a genetic component?

Evaluation of Drugs in Breast Milk

- Measure the M / P radio
- Estimate breast milk dose
- Estimate infant dose
- Measure blood level in the infant

Drugs in Breast Milk

- Free drug transferred into milk
- Milk concentrations usually less than serum concentrations
- Exchange is bi-directional

KINETIC ANALYSIS OF THEOPHYLLINE PLASMA AND MILK CONCENTRATIONS

KINETIC ANALYSIS OF PREDNISOLONE PLASMA AND MILK CONCENTRATIONS

SHADED AREA IS EXPECTED RANGE OF UNBOUND PLASMA CONC.

Factors Effecting the Milk / Plasma Concentration Ratio

- Maternal protein binding
- Protein binding in milk
- Lipid solubility of drug
- Physiochemical factors of drug effecting diffusion

Drugs Generally Contraindicated during Lactation

- Antineoplastics
- Immune suppressants
- Ergot Alkaloids
- Gold
- lodine
- Lithium carbonate
- Radiopharmaceuticals
- Social drugs & drugs of abuse
- Certain antibiotics

General Recommendations

- Drugs considered safe for pregnancy are usually safe during lactation
- Decrease the drug dose to the infant by feeding just prior to a dose
- Infant blood levels can be monitored and should be less than therapeutic